18 преобразование подобия и его свойства. Преобразование подобия. Сходство равносторонних и равнобедренных треугольников

>>Математика: Преобразование подобия

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

1. Определение преобразования подобия. Непосредственным обобщением движений являются преобразования подобия. Преобразование А называется преобразованием подобия, если для этого преобразования существует такое положительное число подобия», что каковы бы были две точки , всегда

При этом, как всегда, через М обозначаем образ точки М. Если , то получаем изометрические преобразования, т. е. движения, являющиеся, таким образом, частным случаем преобразований подобия.

Замечание 1. Легко видеть, что преобразования подобия образуют группу - подгруппу в группе всех преобразований (плоскости, соответственно пространства).

2. Равномерное растяжение (гомотетия). Сначала рассмотрим простейшие преобразования подобия, так называемые равномерные растяжения, или гомотетические преобразования (гомотетии). Растяжением пространства (плоскости) с центром О и коэффициентом растяжения k называется преобразование А, состоящее в следующем:

V Точка О остается неподвижной.

2 Всякая точка переходит в точку М, лежащую на луче ОМ и определяемую на нем условием ОМ .

Таким образом, название «растяжение» соответствует наглядной картине преобразования лишь при наше «растяжение» в действительности оказывается сжатием.

Замечание 2. Так как векторы и ОМ лежат на одной и той же полупрямой, исходящей из точки О, то они имеют одно и то же направление. Поэтому из равенства следует и .

Докажем, что всякое растяжение является преобразованием подобия. В самом деле, пусть при растяжении с центром О и коэффициентом к точки переходят соответственно в точки и М, (рис. 150). Тогда . Треугольники подобны, и, значит, , что и требовалось доказать.

Докажем теперь, что растяжение с центром О и коэффициентом k есть аффинное преобразование. Можно ограничиться случаем плоскости.

Возьмем произвольный координатный репер с началом в центре данного растяжения (рис. 151). Пусть - произвольная точка плоскости, - ее образ при данном растяжении (координаты относительно репера ). Тогда имеем равенство , эквивалентное системе равенств

доказывающей наше утверждение.

Обратно, если в какой-нибудь аффинной координатной системе . Преобразование А записывается в виде (2), то оно есть растяжение с центром О и коэффициентом растяжения k. В самом деле, преобразование - А, оставляя точку О на месте, переводит всякий вектор в вектор , откуда и следует утверждение.

Итак, растяжение плоскости с центром О и коэффициентом k может быть определено как аффинное преобразование, которое в , и тогда непременно во всякой, аффинной системе координат с началом О записывается в виде (2).

Замечание 3. Мы всегда в качестве исходной системы координат можем выбрать прямоугольную систему.

Совершенно аналогичный результат имеет место и для пространства.

Замечание 4. Все растяжения с данным центром образуют группу - подгруппу группы аффинных преобразований (плоскости, соответственно пространства).

3. Представление преобразования подобия в виде произведения растяжения и движения. Из сказанного до сих пор еще не ясно, является ли всякое преобразование подобия аффинным преобразованием. Положительный ответ на этот вопрос содержится в следующей теореме, которая и представляет собою основной результат этого параграфа.

Теорема 11. Всякое преобразование подобия с коэффициентом подобия k есть аффинное преобразование, а именно произведение растяжения с тем же коэффициентом k и произвольным центром О на некоторое собственное или несобственное движение A.

Доказательство. Пусть Q есть растяжение с произвольным центром О и коэффициентом - L. При преобразовании длина каждого отрезка умножается на k, а при преобразовании Q она умножается на поэтому, если сделать сначала преобразование Q, а потом преобразование то получим преобразование при котором длина каждого отрезка остается неизменной. Другими словами, преобразование есть изометрическое преобразование, т. е. движение, собственное или несобственное.

Примеры

  • Каждая гомотетия является подобием.
  • Каждое движение (в том числе и тождественное) также можно рассматривать как преобразование подобия с коэффициентом k = 1 .

Подобные фигуры на рисунке имеют одинаковые цвета.

Связанные определения

Свойства

В метрических пространствах так же, как в n -мерных римановых , псевдоримановых и финслеровых пространствах подобие определяется как преобразование, переводящее метрику пространства в себя с точностью до постоянного множителя.

Совокупность всех подобий n-мерного евклидова, псевдоевклидова, риманова, псевдориманова или финслерова пространства составляет r -членную группу преобразований Ли , называемой группой подобных (гомотетических) преобразований соответствующего пространства. В каждом из пространств указанных типов r -членная группа подобных преобразований Ли содержит (r − 1) -членную нормальную подгруппу движений.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Преобразование подобия" в других словарях:

    преобразование подобия - Изменение характеристик моделируемого объекта посредством умножения его параметров на значения таких величин, которые преобразуют сходственные параметры, обеспечивая этим подобие и делая математическое описание, если оно имеется, тождественным… …

    преобразование подобия - panašumo transformacija statusas T sritis fizika atitikmenys: angl. transformation of similitude vok. Ähnlichkeitstransformation, f; äquiforme Transformation, f rus. преобразование подобия, n pranc. conversion de similitude, f; transformation de… … Fizikos terminų žodynas

    См Гомотетия … Большой энциклопедический политехнический словарь

    преобразование подобия - Изменение количественных характеристик данного явления посредством умножения их на постоянные множители, преобразующие эти характеристики в соответствующие характеристики подобного явления … Политехнический терминологический толковый словарь

    Преобразование - (в кибернетике) изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П … Экономико-математический словарь

    преобразование (в кибернетике) - Изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П. в ходе вещественного процесса. В… … Справочник технического переводчика

    Замена одного математического объекта (геометрической фигуры, алгебраической формулы, функции и др.) аналогичным объектом, получаемым из первого по определенным правилам. Напр., заменяя алгебраическое выражение x2+4x+4 выражением (x+2)2,… … Большой Энциклопедический словарь

    Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

    Одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… … Большая советская энциклопедия

    Я; ср. 1. к Преобразовать и Преобразоваться. П. училища в институт. П. сельского хозяйства. П. механической энергии в тепловую. 2. Коренное изменение, перемена. Крупные социальные преобразования. Заняться хозяйственными преобразованиями. ◁… … Энциклопедический словарь


Презентация по геометрии на тему «Подобие пространственных фигур» Подготовил Ученик 10 «Б» класса Куприянов Артем

Преобразование фигуры F называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз, т. е. для любых двух точек X и У фигуры F и точек X", У фигуры F", в которые они переходят, X"Y" = k * XY . Определение: Преобразование подобия в пространстве Фигура называется подобной фигуре F , если существует подобие пространства, отображающая фигуру F на фигуру Определение:

Свойства подобия 1) При подобии прямые переходят в прямые, плоскости, отрезки и лучи отображаются также в плоскости, отрезки и лучи соответственно. 2) При подобии сохраняется величина угла (плоского и двухгранного), параллельные прямые(плоскости) отображаются как параллельные прямые (плоскости), перпендикулярная прямая и плоскость – на перпендикулярные прямую и плоскость. 3) Из сказанного выше следует, что подобном преобразовании подобия пространства образом любой фигуры является «похожая» на нее фигура, то есть фигура, имеющая такую же форму, что и отображаемая (данная) фигура, но отличающаяся от данной лишь своими «размерами»

Основные свойства подобных фигур Свойство транзитивности. Если фигура F1 подобна фигуре F2 и фигура F2 подобна фигуре F3 , то фигура F1 подобна фигуре F3. Свойство симметричности. Если фигура F1 подобна фигуре F2 , то и фигура F2 подобна фигуре F1 Свойство рефлективности. Фигура подобна сама себе при коэффициенте подобия, равном 1 (при k=1)

Замечательным является тот факт, что все фигуры одного и того же класса обладают одними и теми же свойствами с точностью до подобия (имеют одинаковую форму, но отличаются размерами: отношение площадей подобных фигур равно квадрату коэффициента подобия, а отношение объемов – кубу коэффициента подобия) Три свойства отношения подобия фигур позволяют разбить множество всех фигур пространства на подмножества – попарно непересекающиеся классы подобных между собой фигур: каждый класс представляет собой множество всех подобных друг другу фигур пространства. При этом любая фигура пространства принадлежит одному и только одному из этих классов. Множество кубов Пример: Множество правильных тетраэдров

Гомотетия - один из видов преобразований подобия. Определение. Гомотетией пространства с центром О и коэффициентом называется преобразование пространства, при котором любая точка М отображается на такую точку М ’ , что = k Гомотетию с центром О и коэффициентом k обозначают При k=1 гомотетия является тождественным преобразованием, а при k=-1 – центральной симметрией с центром а центре гомотетии

Примеры гомотетии с центром в точке О

Формулы гомотетии с центром в начале координат и коэффициентом k Свойства гомотетии 1) При гомотетии величина плоского и двухгранного угла сохраняется 2) При гомотетии с коэффициентом k расстояние между точками изменяется в 3) Отношение площадей гомотетических фигур равно квадрату коэффициента гомотетии. 4) Отношение объемов гомотетических фигур равно модулю куба коэффициента гомотетии 5) Гомотетия с положительным коэффициентом не меняет ориентации пространства, а с отрицательным коэффициентом – меняет.

6 свойство (с доказательством) Преобразование гомотетии в пространстве переводит любую плоскость, не проходящую через центр гомотетии, в параллельную плоскость (или в себя при k=1). Действительно, пусть О - центр гомотетии и α - любая плоскость, не проходящая через О. Возьмем любую прямую АВ в плоскости α . Преобразование гомотетии переводит точку А в точку А" на луче OA , а точку В в точку В ’ на луче OB, причем - коэффициент гомотетии. Отсюда следует подобие треугольников АОВ и А"ОВ ’ . Из подобия треугольников следует равенство соответственных углов ОАВ и ОА"В" , а значит, параллельность прямых АВ и А"В". Возьмем теперь другую прямую АС в плоскости. Она при гомотетии перейдет в параллельную прямую А"С". При рассматриваемой гомотетии плоскость перейдет в плоскость " проходящую через прямые А"В", А"С. Так как А"В‘ ll АВ и А ’ С ’ ll АС, то по признаку параллельности плоскостей плоскости и параллельны, что и требовалось доказать. Дано α O – центр гомотетии Доказать α II α ’ Доказательство

Кино в кинотеатрах

Пусть рассматривается некоторая фигура и фигура, полученная из нее преобразованием подобия (центр О, коэффициент k, см. рис. 263). Установим основные свойства преобразования подобия.

1. Преобразование подобия устанавливает между точками фигур взаимно однозначное соответствие.

Это значит, что при заданном центре О и коэффициенте подобия k всякой точке первой фигуры отвечает единственным образом определенная точка второй фигуры и что, обратно, всякая точка второй фигуры получена преобразованием единственной точки первой Фигуры.

Доказательство. То, что любой точке А исходной фигуры отвечает определенная точка А преобразованной фигуры, следует из определения, указывающего точный способ преобразования. Легко видеть, что, и обратно, преобразованная точка А определяет исходную точку А однозначно: обе точки должны лежать на одном луче при и на противоположных лучах при и отношение их расстояний до начала луча О известно: при Поэтому точка А, лежащая на известном нам расстоянии от начала О, определена единственным образом.

Следующее свойство можно назвать свойством взаимности.

2. Если некоторая фигура получена из другой фигуры преобразованием подобия с центром О и коэффициентом подобия k, то, и обратно, исходная фигура может быть получена преобразованием подобия из второй фигуры с тем же центром подобия и коэффициентом подобия

Это свойство, очевидно, следует хотя бы из рассуждений, приведенных при доказательстве свойства 1. Читателю остается проверить, что соотношение верно для обоих случаев: КО и

Фигуры, получаемые одна из другой преобразованием подобия, называют гомотетичными или подобно расположенными.

3. Любые точки, лежащие на одной прямой, преобразуются при гомотетии в щочки, лежащие на одной прямой, параллельной исходной (совпадающей с ней, если она проходит через О).

Доказательство. Случай, когда прямая проходит через О, ясен; любые точки этой прямой переходят в точки этой же прямой. Рассмотрим общий случай: пусть (рис. 266) А, В, С - три точки основной фигуры, лежащие на одной прямой; пусть А - образ точки А при преобразовании подобия.

Проведем покажем, что образы В и С также лежат на АК. Действительно, проведенная прямая и прямая АС отсекают на ОА, ОВ, ОС пропорциональные части: Таким образом, видно, что точки , лежащие на лучах ОВ и ОС и на прямой АК (аналогично получится и при являются соответственными для В и С. Можно сказать, что при преобразовании подобия всякая прямая, не проходящая через центр подобия, преобразуется в прямую, параллельную себе.

Из сказанного уже видно, что всякий отрезок преобразуется также в отрезок.

4. При преобразовании подобия отношение любой пары соответствующих отрезков равно одному и тому же числу - коэффициенту подобия.

Доказательство. Следует различать два случая.

1) Пусть данный отрезок АВ не лежит на луче, проходящем через центр подобия (рис. 266). В этом случае данные два отрезка - исходный АВ и ему подобно соответствующий АВ - суть отрезки параллельных прямых, заключенные между сторонами угла АОВ. Применяя свойство п. 203, находим , что и требовалось доказать.

2) Пусть данный отрезок, а значит, и ему подобно соответствующий лежат на одной прямой, проходящей через центр подобия (отрезки АВ и АВ на рис. 267). Из определения подобного преобразования имеем откуда, образуя производную пропорцию, находим , что и требовалось доказать.

5. Углы между соответствующими прямыми (отрезками) подобно расположенных фигур равны.

Доказательство. Пусть данный угол и угол, соответствующий ему при преобразовании подобия с центром О и некоторым коэффициентом k. На рис. 263, 264 представлены два варианта: . В любом из этих случаев по свойству 3 стороны углов попарно параллельны. При этом в одном случае обе пары сторон одинаково направлены, во втором - обе противоположно направлены. Таким образом, по свойству углов с параллельными сторонами углы равны.

Итак, доказана

Теорема 1. У подобно расположенных фигур любые соответствующие пары отрезков находятся в одном и том же постоянном отношении, равном коэффициенту подобия; любые пары соответствующих углов равны.

Таким образом, из двух подобно расположенных фигур любая может считаться изображением другой в некотором выбранной масштабе.

Пример 1. Построить фигуру, подобно расположенную с квадратом ABCD (рис. 268) при данном центре подобия О и коэффициенте подобия

Решение. Соединяем одну из вершин квадрата (например, А) с центром О и строим точку А такую, что Эта точка и будет соответствовать А в преобразовании подобия. Дальнейшее построение удобно провести так: соединим остальные вершины квадрата с О и через А проведем прямые, параллельные соответствующим сторонам АВ и AD. В точках их пересечения с О В и и будут помещаться вершины В и D. Так же проводим ВС параллельно ВС и находим четвертую вершину С. Почему ABCD также является квадратом? Обосновать самостоятельно!

Пример 2. На рис. 269 показана пара подобно расположенных треугольных пластинок. На одной из них изображена точка К. Построить соответствующую точку на второй.

Решение. Соединим К с одной из вершин треугольника, например с А. Полученная прямая пересечет сторону ВС в точке L. Находим соответствующую точку L как пересечение и ВС и строим искомую точку К на отрезке , пересекая его прямой ОК.

Теорема 2. Фигура, гомотетичная окружности (кругу), есть снова окружность (круг). Центры кругов подобно соответствуют.

Доказательство. Пусть С-центр окружности Ф радиуса R (рис. 270), О - центр подобия. Коэффициент подобия обозначим через k. Пусть С - точка, подобно соответствующая центру С окружности . (Мы еще не знаем, будет ли она сохранять роль центра!) Рассмотрим всевозможные радиусы окружности все они при преобразовании подобия перейдут в отрезки, параллельные себе и имеющие равные длины

Таким образом, все концы преобразованных радиусов разместятся вновь на одной окружности с центром С и радиусом R, что и требовалось доказать.

Обратно, любые две окружности находятся в гомотетичном соответствии (в общем случае даже двояком, с двумя разными центрами).

Действительно, проведем любой радиус первой окружности (радиус СМ на рис. 271) и оба параллельных ему радиуса второй окружности. Точки пересечения линии центров СС и прямых, соединяющих конец радиуса СМ с концами радиусов, параллельных ему, т. е. точки О и О" на рис. 271, могут быть приняты за центры гомотетии (первого и второго рода).

В случае концентрических окружностей имеется единственный центр гомотетии - общий центр окружностей; равные окружности находятся в соответствии гомотетии с центром в середине отрезка .



Похожие публикации